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Plane-parallel convective motion between vertical planes due to heat sources distributed 

uniformly in the fluid is considered. 

Internal heating in a channel closed top and bottom gives rise to closed convective 
motion with velocity and temperature profiles which are even with respect to the chan- 

nel axis. 
The investigation is carried out under the assumption that the effect of thermal per- 

turbations is negligible. The spectra of the decrements of the normal hydrodynamic per- 

turbations are determined. It is shown that the motion becomes unstable with respect to 
perturbations in the form of eddies which arise at the boundaries of convective counter- 
currents. The neutral curves for the two lower instability modes differing ln the relative 
disposition of eddy chains are constructed. 

1. Steady motion. Let us consider a plane vertical layer of thickness % bound- 
ed by the parallel planes CE: = +- h. The temperature of the two planes are malntained 
constant and equal (in the discussion to follow this constant temperature serves as the 

reference point). Internal heat sources of volume density Q are distributed uniformly 
through the volume. Let us write out the equations of convection with allowance for the 
internal heat sources. 

~~+(vv)v=-$Vp+YAv+gPTr (1.~1 

where all the symbols have their standard meaning. 
If the vertical dimension of the channel is sufficiently large, the steady motion in its 

middle portion can be regarded as plane-parallel (the disposition of the coordinate axes 

Fig. 1 

is shown iu Fig. 1) , 

v, = vy = 0, v, = q)(x), 

T = T&4, P = PO(~) (1 .S) 

Equations (1.1) and (1.2) yield the following equa- 

tions for tag, T, and po: 

T,” = - q q = AZ- = const 
PCJ 

(I.41 

Here C is the separation-of-variables constant. 

The velocity and temperature vanish at the solid iso- 
thermal boundaries of the channel. In addition, we 
assume that the channel is closed top and bottom ; this 
implies that the discharge over any cross section is 
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equal to zero, Ir 

V” (141 h) = 0, I’” ( _: h) : 0, \ C,dL = 0 . (1.5) 
-h 

-From (1.4) and (1.5) we obtain the velocity. temperature, and pressure distributions 

in plane-parallel steady motion. (I.61 

uo = $$ [’ - 6 (;I” + 5 ($)“I, T, = 2;: [I _ (;)“l , g = ; ,,j,, 

Thus, in contrast to convective flow between planes at different temperatures, the flow 
in this case has even velocity and temperature profiles. The velocity distribution is shown 

in Fig. 1. We see that the flow consists of three convective streams, an ascending central 
stream and two descending streams at the walls. The maximum velocity at the axis is 

v, = g/3qh4 I 120~ 

2. Normal perturbation,. We propose to investigate the stability of steady 
motion (1.6) by the method of perturbations. Let us consider the perturbed motion 

vo+v,To+T~~o+~ h , w ere v, T, p are small unsteady perturbations. In the 

approximation linear with respect to perturbations, we obtain the following dimension- 

less perturbation equations from (1. l), (1.2) : 

avlat + G [(vV) vo + (voV) v] = - Vp + Av + Ty (2.1) 

dT/dt + G [vVT, + v,VT] = P-‘AT, divv= 0 (2.2) 

(G = gpqh6/2v2, P = v/x) 

The units of distance, time, velocity, temperature, and pressure in these expressions 
are, respectively, h, h2 I v, gflqh4 !2v, qh2 12, Pgflqh3 / 2 

The Prandtl number is defined as usual. The Grasshof number is defined in terms of 
the strength q of the internal heat sources; it is clear that the Grasshof number contains 

the maximum temperature at the channel axis r/2 qh2 as the characteristic temperature 

difference. The dimensionless velocity and temperature profiles are of the form 

270 = ‘/,jo(l - 6x2 + 5s4), To = 1 -x2 (2.3) 

Let us consider the plane perturbations 

U, (x,z,t) = - aq/az, vy = 0, vu (x, z, t) = a$ i ax, i” = T(s, z, t) (2.4) 

Here$(X, 2, t) is the stream function. We set 

9 = q(x) exp(- At + ikz), T = 0(z) exp (- At + ikz) (2.5) 

where ‘p and 8 are the amplitudes of the normal perturbations, k is the decrement, and 

k is the wavenumber. 
Substituting (2.5) into (2.1) and (2.2), we obtain the amplitude equations 

A2’p - ikGHq f 0’ = - AAT (2.6) 

P-160 + ikG(T,‘cp - voe) = - ?A (2.7) 

(&I z cp” - k2q, Hv 3 v,Ay --v,“cp) 

The condition whereby the velocity and temperature perturbations vanish at the bound- 
aries of the layer implies the following homogeneous boundary conditions for the ampli- 

tudes : 
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cp = cp’ = 0,e = 0 for X = + 1 (2.8) 

Boundary value problem (2.6) - (2.8) defines the spectrum of the characteristic per- 
turbations and their decrements A. 

The results of lJ - 53 imply that in the case of a vertical channel the convective 

countercurrents are hydrodynamically unstable. The role of thermal perturbations in 

this case is relatively slight; this is reflected, for example, in the weak dependence of 

the critical Grasshof number on the Prandtl number. The flow in question also consists of 
convective countercurrents\ which suggests that its crisis (at least for not excessively large 

Prandtl numbers) is associated with a hydrodynamic mechanism. The stability of this 
flow can therefore be established in a purely hydrodynamic formulation, i. e. without 

allowance for thermal perturbations and their effect on the development of hydromechan- 

ical perturbations. In this approximation it is necessary to neglect the term containing 
the lifting force 8’ in equation of motion (2.6) and to disregard heat conduction equation 

(2.7). This reduces analysis to the solution of the Orr-Sommerfeld boundary value prob- 
lem A2v - ikGHq = - M(P, cp=‘p’=O for x=&l (2.9 

with a given velocity profile or,. 

We shall solve the problem by the Bubnov-Galerkin method. As our basic system of 
functions we take the amplitudes q$s’ of the perturbations in the quiescent fluid as de- 

fined by the boundary value problem 

A%pJ,@ = - @rpi(O), cp.(O) = cpi(O)’ = 0 for z = f 1 (t = 0,1,2 . . .) 

(the explicit form of the bisis functions is given. for example, in [S]). 

(2.10) 

Substituting the approximation 

cp = a,&) + a,&) + . . . + ajvq# (2.11) 

into Eq. (2.9). multiplying by cp\” and integrating from minus unity to plus unity over 
z , we obtain the system of linear homogeneous equations 

N 

2 [(I+, - A) hn, + ikGH,,,,l a,, - 0 (m =o 1 * 3 . . . , 
NJ (2.12) 

n=o 

Hmn=+\ no) 
1 

n 
‘p,,,(‘)Hq ( dz, J, = \ ‘p,,Wp,,Wx . 

-1 -1 

The characteristic decrements h. are defined as the eigenvalues of the matrix of sys- 

tem (2.12). 
Because of the evenness of the velocity profile u, , boundary value problem (2.9) has 

two types of solutions, namely solutions which are even and odd with respect to z. The 

even solutions are approximated by the subsystem of even basis functions (2.10) (i = 0, 

2, 4 , . . . ) and the odd solutions by subsytem of odd functions (i = 1, 3, 5, . ..). In ac- 
cordance with this fact, the matrix of system (2.12) is of block-diagonal form. This 

enables us to find approximate solutions of even and odd types by retaining even or odd 

functions, respectively, in approximation (2.11). 
The eigenvalues h were determined by diagonalizing the complex matrix by means 

of the QR-algorithm (see p]). In constructing the even and odd solutions we chose 

approximations containing as many as 16 basis functions of even or odd types. Converg- 
ence was tested by comparing the resulting values of the complex decrements in appro- 
ximations containing 8 and 16 basis functions of like parity. in the range’0 f jcG .< 3.104 
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the decrements of the eight lower levels of the spectrum in this approximation turned 
out to be practically equal 

3. Thr deoremant #pectrum, Iutrbility. Now let us consider the results. 
Figures 2 and 3 show same data obtained by analyzing the decrement spectrum for a fixed 
value of the wavenumber k = i. In accordance with the general theory [S], the property 

of evenness of the unperturbed profile has the effect of rendering the decrements of the 

normal perturbations complex h = 5 + oh, for arbitrarily small main stream velocities 

(for arbitrarily small G). The real part & characterizes the rate of decay (or growth) of 
the perturbations ; the imaginary part li defines their phase velocity. 

Fig, 2 Fig. 3 

Figure 2 shows the real parts of several “lower” levels of the decrement spectrum. 

The solid curves correspond to the even (0, 2. 4,. . . ) perturbations ; the broken curves 
correspond to the odd (1, 3, 5,. . . ) ones. The levels are numbered in the order of increas- 

ing real parts h, for small G. 

As we see from Fig, 2, the two bottom levels (the first even and the first odd levels) 
give rise to instability for sufficiently large G ; the real parts of the corresponding decre- 

ments (with the numbers zero and unity) become negative with increasing G. The criti- 

cal values of the Grasshof number for the wavenumber k = i are G - 2960 and G = 8600. 

Figure 3 shows the dimensionless phase velocities c for the same perturbations. The 
phase velocity unit is the maximum velocity of unperturbed motion at the channel axis 
( V,). The dimensionless phase velocity determined in these units is related, to the imag- 

inary part hi of the decrement by the expression 
60 hi 

C=Gk 
Positive values of the phase velocity c are associated with perturbations in the form 

of travelling waves propagating in the positive direction of the z-axis, i. e. with per- 
turbations deflected (swept) by the ascending central stream.Calculations indicate that 
the phase velocity of the same mode can have different signs for different k and G (for 
example, Fig. 3 shows the change in the sign of c with an increasing Grasshof number 

for the fourth spectral level). 
The spectra h, (G) obtained for various wave numbers can be used to find the critical 

numbers G as functions of k (neutral curves along which h,. = 0). The neutral curves 
for the lowest even and lowest odd levels are shown in Figs.4 and 5. These figures also 
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show the critical values of the phase velocities (the values of c corresponding to the 
points of the neutral curve). 

Thus, calculations indicate that 
the steady motion under considera- 

tion becomes unstable with respect 

to even and odd perturbations. Per- 

turbations of the even type are more 

hazardous than the odd-type pertur- 

bations : the minimum critical Grass- 

hof number for the even perturba- 

tions is G, = 1729 and occurs at 

the critical wavenumber k,,, = 2.05: 
for odd perturbations G,,, = 5180, 

km = 1.57. It is interesting to nbte 
that the phase velocity of the fun- 

damental instability mode changes 
sign with changes in the parameters 

along the neutral curve (Fig. 4b). 
The long- wave neutral perturbations 
with k < 2.65 have a negative phase 

velocity, i. e. the perturbations are Fig. 4 Fig. 5 

swept downward; in particular for the critical perturbation which corresponds to the mi- 
nimum of the neutral curve c, = -0.16. For the perturbations with k > 2.65 , the phase 

velocity c > 0, i. e. the perturbations are swept upward. Thus, the neutral curve contains 
a point (k = 2.65) which is associated with a neutral “standing” perturbation with a zero 

phase velocity. This point is the intersection of the neutral curve h, = U with the curve 

hi = 0, all of whose points correspond to standing (decaying or growing) perturbations. 
‘l’he existence of standing perturbations, including the neutral one (at k = 2.65) is, of 

course, due to the fact that the steady flow in question is closed (the discharge equals 

zero) even though its profile is even. 
In contrast to the fundamental instability level, the neutral critical perturbations of 

odd mode have a positive phase velocity for all k , i.e. they are swept upward (Fig. 5b). 

At the minimum of the neutral curve c, = 0.15. 

In order to determine the forms of the critical perturbations corresponding to the two 
instability levels we were obliged to find the coeffkients of expansions (2.11). These 

coefficients are defined (to within normalization) by homogeneous system (2.12). We 
computed the proper vector by the Gauss method. Knowing the stream function $of the 

perturbations, we were able to construct the stream function of the overall motion, 

namely Y = q,, (5) + @ (5, Z, t), where $,, is the stream function of the main motion 

(2.3). 
The isolines of the stream function of the sum motion are defined by the equation 

He Y =const (He is the real part). Figure 6 shows the form of the sum (perturbed) motion 
for the two instability modes. In constructing the isolines we fixed an instant t = 0 and 

determined the normalization factor a from the requirement that the maximum value 
of the perturbation stream functioq be equal to 0.1 of the maximum value of the unper- 

turbed stream function. Both pictures of motion correpond to growing perturbations with 
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parameters k and G close to the minima of the neutral curves. Figure 6a corresponds 
to the even instability mode with the parameters k I: 2. r: = 2000 ; Figure 6b corre- 
sponds to an odd mode with the parameters k = 1.5, G = ,‘~OOU ; the values of l-le Y indi.- 

cated in the figure have been increased by the factor IO3 . 

a 

ig. 6 

The perturbed-motion structures 
shown in Fig.6 provide an insight mto 
the nature of the instability of the 

convective flow in question and ena- 

ble us to distinguish between the two 

instability modes. As in the case of 

convective flow between planes at 
different temperatures, instability in 

this case develops in the form of a 

system of eddies at the boundaries 
between the convective counterflows. 
In contrast to the flow with a cubic 

profile, there are now two of these 

boundaries: one on the right and one 

on the left side of the channel. 
Accordingly, we have two chains of 
eddies whose relative disposi tiou 
varies. The lower instability mode 

is associated with two eddy chains in 
a checkerboard configuration (Fig.6a). 

The upper mode is associated with 

chains in a mirror-image arrangement symmetric with respect to the center of the chan- 
nel (Fig. 6b). The checkerboard configuration implies more “densely packed” eddies, 

and is therefore preferable (since it corresponds to a smaller critical Grasshof number). 

Denser packing of the eddy system naturally means a smaller critical wavelength: in 
the checkerboard arrangement the distance between neighboring eddies (at the minimum 
of the neutral curve) is 3h ; in the mirror-image arrangement this distance is 4h (h is 

the half-width of the channel). 
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